Cargando…
Faster and Better: How Anomaly Detection Can Accelerate and Improve Reporting of Head Computed Tomography
Background: Most artificial intelligence (AI) systems are restricted to solving a pre-defined task, thus limiting their generalizability to unselected datasets. Anomaly detection relieves this shortfall by flagging all pathologies as deviations from a learned norm. Here, we investigate whether diagn...
Autores principales: | Finck, Tom, Moosbauer, Julia, Probst, Monika, Schlaeger, Sarah, Schuberth, Madeleine, Schinz, David, Yiğitsoy, Mehmet, Byas, Sebastian, Zimmer, Claus, Pfister, Franz, Wiestler, Benedikt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871235/ https://www.ncbi.nlm.nih.gov/pubmed/35204543 http://dx.doi.org/10.3390/diagnostics12020452 |
Ejemplares similares
-
Automated Detection of Ischemic Stroke and Subsequent Patient Triage in Routinely Acquired Head CT
por: Finck, Tom, et al.
Publicado: (2021) -
Impact of normative brain volume reports on the diagnosis of neurodegenerative dementia disorders in neuroradiology: A real-world, clinical practice study
por: Hedderich, Dennis M., et al.
Publicado: (2022) -
Uncertainty-Aware and Lesion-Specific Image Synthesis in Multiple Sclerosis Magnetic Resonance Imaging: A Multicentric Validation Study
por: Finck, Tom, et al.
Publicado: (2022) -
Is faster always better?
por: Hamila, MA, et al.
Publicado: (2006) -
Synthetic T2-weighted fat sat based on a generative adversarial network shows potential for scan time reduction in spine imaging in a multicenter test dataset
por: Schlaeger, Sarah, et al.
Publicado: (2023)