Cargando…
Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions
In this paper, we study the fractional Sturm–Liouville problem with homogeneous Neumann boundary conditions. We transform the differential problem to an equivalent integral one on a suitable function space. Next, we discretize the integral fractional Sturm–Liouville problem and discuss the orthogona...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871260/ https://www.ncbi.nlm.nih.gov/pubmed/35205439 http://dx.doi.org/10.3390/e24020143 |
_version_ | 1784656954359021568 |
---|---|
author | Klimek, Malgorzata Ciesielski, Mariusz Blaszczyk, Tomasz |
author_facet | Klimek, Malgorzata Ciesielski, Mariusz Blaszczyk, Tomasz |
author_sort | Klimek, Malgorzata |
collection | PubMed |
description | In this paper, we study the fractional Sturm–Liouville problem with homogeneous Neumann boundary conditions. We transform the differential problem to an equivalent integral one on a suitable function space. Next, we discretize the integral fractional Sturm–Liouville problem and discuss the orthogonality of eigenvectors. Finally, we present the numerical results for the considered problem obtained by utilizing the midpoint rectangular rule. |
format | Online Article Text |
id | pubmed-8871260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88712602022-02-25 Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions Klimek, Malgorzata Ciesielski, Mariusz Blaszczyk, Tomasz Entropy (Basel) Article In this paper, we study the fractional Sturm–Liouville problem with homogeneous Neumann boundary conditions. We transform the differential problem to an equivalent integral one on a suitable function space. Next, we discretize the integral fractional Sturm–Liouville problem and discuss the orthogonality of eigenvectors. Finally, we present the numerical results for the considered problem obtained by utilizing the midpoint rectangular rule. MDPI 2022-01-18 /pmc/articles/PMC8871260/ /pubmed/35205439 http://dx.doi.org/10.3390/e24020143 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Klimek, Malgorzata Ciesielski, Mariusz Blaszczyk, Tomasz Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions |
title | Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions |
title_full | Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions |
title_fullStr | Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions |
title_full_unstemmed | Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions |
title_short | Exact and Numerical Solution of the Fractional Sturm–Liouville Problem with Neumann Boundary Conditions |
title_sort | exact and numerical solution of the fractional sturm–liouville problem with neumann boundary conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871260/ https://www.ncbi.nlm.nih.gov/pubmed/35205439 http://dx.doi.org/10.3390/e24020143 |
work_keys_str_mv | AT klimekmalgorzata exactandnumericalsolutionofthefractionalsturmliouvilleproblemwithneumannboundaryconditions AT ciesielskimariusz exactandnumericalsolutionofthefractionalsturmliouvilleproblemwithneumannboundaryconditions AT blaszczyktomasz exactandnumericalsolutionofthefractionalsturmliouvilleproblemwithneumannboundaryconditions |