Cargando…
Estimating Non-Gaussianity of a Quantum State by Measuring Orthogonal Quadratures
We derive the lower bounds for a non-Gaussianity measure based on quantum relative entropy (QRE). Our approach draws on the observation that the QRE-based non-Gaussianity measure of a single-mode quantum state is lower bounded by a function of the negentropies for quadrature distributions with maxim...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871266/ https://www.ncbi.nlm.nih.gov/pubmed/35205583 http://dx.doi.org/10.3390/e24020289 |
Sumario: | We derive the lower bounds for a non-Gaussianity measure based on quantum relative entropy (QRE). Our approach draws on the observation that the QRE-based non-Gaussianity measure of a single-mode quantum state is lower bounded by a function of the negentropies for quadrature distributions with maximum and minimum variances. We demonstrate that the lower bound can outperform the previously proposed bound by the negentropy of a quadrature distribution. Furthermore, we extend our method to establish lower bounds for the QRE-based non-Gaussianity measure of a multimode quantum state that can be measured by homodyne detection, with or without leveraging a Gaussian unitary operation. Finally, we explore how our lower bound finds application in non-Gaussian entanglement detection. |
---|