Cargando…
Sufficient Dimension Reduction: An Information-Theoretic Viewpoint
There has been a lot of interest in sufficient dimension reduction (SDR) methodologies, as well as nonlinear extensions in the statistics literature. The SDR methodology has previously been motivated by several considerations: (a) finding data-driven subspaces that capture the essential facets of re...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871343/ https://www.ncbi.nlm.nih.gov/pubmed/35205462 http://dx.doi.org/10.3390/e24020167 |
Sumario: | There has been a lot of interest in sufficient dimension reduction (SDR) methodologies, as well as nonlinear extensions in the statistics literature. The SDR methodology has previously been motivated by several considerations: (a) finding data-driven subspaces that capture the essential facets of regression relationships; (b) analyzing data in a ‘model-free’ manner. In this article, we develop an approach to interpreting SDR techniques using information theory. Such a framework leads to a more assumption-lean understanding of what SDR methods do and also allows for some connections to results in the information theory literature. |
---|