Cargando…
Prediction of Time Series Gene Expression and Structural Analysis of Gene Regulatory Networks Using Recurrent Neural Networks
Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural network (RNN) models boosted the interpretability of RNN parameters, making them appealing...
Autores principales: | Monti, Michele, Fiorentino, Jonathan, Milanetti, Edoardo, Gosti, Giorgio, Tartaglia, Gian Gaetano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871363/ https://www.ncbi.nlm.nih.gov/pubmed/35205437 http://dx.doi.org/10.3390/e24020141 |
Ejemplares similares
-
2D Zernike polynomial expansion: Finding the protein-protein binding regions
por: Milanetti, Edoardo, et al.
Publicado: (2020) -
Beyond the Maximum Storage Capacity Limit in Hopfield Recurrent Neural Networks
por: Gosti, Giorgio, et al.
Publicado: (2019) -
Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network
por: Kordmahalleh, Mina Moradi, et al.
Publicado: (2017) -
Computational optimization of angiotensin-converting enzyme 2 for SARS-CoV-2 Spike molecular recognition
por: Di Rienzo, Lorenzo, et al.
Publicado: (2021) -
Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence
por: Khan, Abhinandan, et al.
Publicado: (2016)