Cargando…
Stability and Evolution of Synonyms and Homonyms in Signaling Game
Synonyms and homonyms appear in all natural languages. We analyze their evolution within the framework of the signaling game. Agents in our model use reinforcement learning, where probabilities of selection of a communicated word or of its interpretation depend on weights equal to the number of accu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871383/ https://www.ncbi.nlm.nih.gov/pubmed/35205489 http://dx.doi.org/10.3390/e24020194 |
Sumario: | Synonyms and homonyms appear in all natural languages. We analyze their evolution within the framework of the signaling game. Agents in our model use reinforcement learning, where probabilities of selection of a communicated word or of its interpretation depend on weights equal to the number of accumulated successful communications. When the probabilities increase linearly with weights, synonyms appear to be very stable and homonyms decline relatively fast. Such behavior seems to be at odds with linguistic observations. A better agreement is obtained when probabilities increase faster than linearly with weights. Our results may suggest that a certain positive feedback, the so-called Metcalfe’s Law, possibly drives some linguistic processes. Evolution of synonyms and homonyms in our model can be approximately described using a certain nonlinear urn model. |
---|