Cargando…

Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model

Remote sensing image change detection is widely used in land use and natural disaster detection. In order to improve the accuracy of change detection, a robust change detection method based on nonsubsampled contourlet transform (NSCT) fusion and fuzzy local information C-means clustering (FLICM) mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Liangliang, Ma, Hongbing, Jia, Zhenhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871418/
https://www.ncbi.nlm.nih.gov/pubmed/35205585
http://dx.doi.org/10.3390/e24020291
Descripción
Sumario:Remote sensing image change detection is widely used in land use and natural disaster detection. In order to improve the accuracy of change detection, a robust change detection method based on nonsubsampled contourlet transform (NSCT) fusion and fuzzy local information C-means clustering (FLICM) model is introduced in this paper. Firstly, the log-ratio and mean-ratio operators are used to generate the difference image (DI), respectively; then, the NSCT fusion model is utilized to fuse the two difference images, and one new DI is obtained. The fused DI can not only reflect the real change trend but also suppress the background. The FLICM is performed on the new DI to obtain the final change detection map. Four groups of homogeneous remote sensing images are selected for simulation experiments, and the experimental results demonstrate that the proposed homogeneous change detection method has a superior performance than other state-of-the-art algorithms.