Cargando…
Detection of Cause-Effect Relations Based on Information Granulation and Transfer Entropy
Causality inference is a process to infer Cause-Effect relations between variables in, typically, complex systems, and it is commonly used for root cause analysis in large-scale process industries. Transfer entropy (TE), as a non-parametric causality inference method, is an effective method to detec...
Autores principales: | Zhang, Xiangxiang, Hu, Wenkai, Yang, Fan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871421/ https://www.ncbi.nlm.nih.gov/pubmed/35205507 http://dx.doi.org/10.3390/e24020212 |
Ejemplares similares
-
Feature Selection Using Approximate Conditional Entropy Based on Fuzzy Information Granule for Gene Expression Data Classification
por: Zhang, Hengyi
Publicado: (2021) -
Transfer Information Assessment in Diagnosis of Vasovagal Syncope Using Transfer Entropy
por: Buszko, Katarzyna, et al.
Publicado: (2019) -
Double-Granule Conditional-Entropies Based on Three-Level Granular Structures
por: Mu, Taopin, et al.
Publicado: (2019) -
Belavkin–Staszewski Relative Entropy, Conditional Entropy, and Mutual Information
por: Zhai, Yuan, et al.
Publicado: (2022) -
An introduction to transfer entropy: information flow in complex systems
por: Bossomaier, Terry, et al.
Publicado: (2016)