Cargando…

Effect of Humidity and Temperature on the Impedances and Voltage of Al/Gr-Jelly/Cu-Rubber Composite-Based Flexible Electrochemical Sensors

Here we present the fabrication of graphene and jelly (superabsorbent polymer) electrolyte composite-based shockproof flexible electrochemical sensors (Al/Gr-Jelly/Cu) and their properties under the effect of humidity and temperature. A layer of graphene mixed in jelly electrolyte was drop-casted on...

Descripción completa

Detalles Bibliográficos
Autores principales: Chani, Muhammad Tariq Saeed, Karimov, Khasan S., Bakhsh, Esraa M., Rahman, Mohammed M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871431/
https://www.ncbi.nlm.nih.gov/pubmed/35200455
http://dx.doi.org/10.3390/gels8020073
Descripción
Sumario:Here we present the fabrication of graphene and jelly (superabsorbent polymer) electrolyte composite-based shockproof flexible electrochemical sensors (Al/Gr-Jelly/Cu) and their properties under the effect of humidity and temperature. A layer of graphene mixed in jelly electrolyte was drop-casted onto porous rubber substrates between preliminary fixed aluminum (Al) and copper (Cu) electrodes followed by rubbing-in. It was observed that the graphene and jelly mixture was mechanically soft and flexible, similar to jelly. Electrically, this mixture (graphene and jelly) behaved as a flexible electrolyte. It was observed that under the effect of humidity ranging from 47 to 98%, the impedances of the sensors decreased by 2.0 times on average. Under the effect of temperatures ranging from 21 to 41 °C the impedances decreased by 2.4 times. The average temperature coefficient of impedances was equal to −0.03 °C(−1). The electrochemical voltage generated by the flexible jelly electrolyte sensors was also investigated. It was found that the initial open-circuit voltages were equal to 201 mV and increased slightly, by 5–10% under the effect of humidity and temperature as well. The short-circuit currents under the effect of humidity and temperature increased by 2–3 times. The Al/Gr-Jelly/Cu electrochemical sensors may be used as prototypes for the development of the jelly electronic-based devices.