Cargando…
Plasma-like Description for Elementary and Composite Quantum Particles
Schrödinger noticed in 1952 that a scalar complex wave function can be made real by a gauge transformation. The author showed recently that one real function is also enough to describe matter in the Dirac equation in an arbitrary electromagnetic or Yang–Mills field. This suggests some “symmetry” bet...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871478/ https://www.ncbi.nlm.nih.gov/pubmed/35205555 http://dx.doi.org/10.3390/e24020261 |
_version_ | 1784657005204471808 |
---|---|
author | Akhmeteli, Andrey |
author_facet | Akhmeteli, Andrey |
author_sort | Akhmeteli, Andrey |
collection | PubMed |
description | Schrödinger noticed in 1952 that a scalar complex wave function can be made real by a gauge transformation. The author showed recently that one real function is also enough to describe matter in the Dirac equation in an arbitrary electromagnetic or Yang–Mills field. This suggests some “symmetry” between positive and negative frequencies and, therefore, particles and antiparticles, so the author previously considered a description of one-particle wave functions as plasma-like collections of a large number of particles and antiparticles. The description has some similarities with Bohmian mechanics. This work offers a criterion for approximation of continuous charge density distributions by discrete ones with quantized charge based on the equality of partial Fourier sums, and an example of such approximation is computed using the homotopy continuation method. An example mathematical model of the description is proposed. The description is also extended to composite particles, such as nucleons or large molecules, regarded as collections including a composite particle and a large number of pairs of elementary particles and antiparticles. While it is not clear if this is a correct description of the reality, it can become a basis of an interesting model or useful picture of quantum mechanics. |
format | Online Article Text |
id | pubmed-8871478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88714782022-02-25 Plasma-like Description for Elementary and Composite Quantum Particles Akhmeteli, Andrey Entropy (Basel) Article Schrödinger noticed in 1952 that a scalar complex wave function can be made real by a gauge transformation. The author showed recently that one real function is also enough to describe matter in the Dirac equation in an arbitrary electromagnetic or Yang–Mills field. This suggests some “symmetry” between positive and negative frequencies and, therefore, particles and antiparticles, so the author previously considered a description of one-particle wave functions as plasma-like collections of a large number of particles and antiparticles. The description has some similarities with Bohmian mechanics. This work offers a criterion for approximation of continuous charge density distributions by discrete ones with quantized charge based on the equality of partial Fourier sums, and an example of such approximation is computed using the homotopy continuation method. An example mathematical model of the description is proposed. The description is also extended to composite particles, such as nucleons or large molecules, regarded as collections including a composite particle and a large number of pairs of elementary particles and antiparticles. While it is not clear if this is a correct description of the reality, it can become a basis of an interesting model or useful picture of quantum mechanics. MDPI 2022-02-10 /pmc/articles/PMC8871478/ /pubmed/35205555 http://dx.doi.org/10.3390/e24020261 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Akhmeteli, Andrey Plasma-like Description for Elementary and Composite Quantum Particles |
title | Plasma-like Description for Elementary and Composite Quantum Particles |
title_full | Plasma-like Description for Elementary and Composite Quantum Particles |
title_fullStr | Plasma-like Description for Elementary and Composite Quantum Particles |
title_full_unstemmed | Plasma-like Description for Elementary and Composite Quantum Particles |
title_short | Plasma-like Description for Elementary and Composite Quantum Particles |
title_sort | plasma-like description for elementary and composite quantum particles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871478/ https://www.ncbi.nlm.nih.gov/pubmed/35205555 http://dx.doi.org/10.3390/e24020261 |
work_keys_str_mv | AT akhmeteliandrey plasmalikedescriptionforelementaryandcompositequantumparticles |