Cargando…

An Enhanced Full-Form Model-Free Adaptive Controller for SISO Discrete-Time Nonlinear Systems

This study focuses on the full-form model-free adaptive controller (FFMFAC) for SISO discrete-time nonlinear systems, and proposes enhanced FFMFAC. The proposed technique design incorporates long short-term memory neural networks (LSTMs) and fuzzy neural networks (FNNs). To be more precise, LSTMs ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ye, Chen, Chen, Lu, Jiangang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871481/
https://www.ncbi.nlm.nih.gov/pubmed/35205458
http://dx.doi.org/10.3390/e24020163
Descripción
Sumario:This study focuses on the full-form model-free adaptive controller (FFMFAC) for SISO discrete-time nonlinear systems, and proposes enhanced FFMFAC. The proposed technique design incorporates long short-term memory neural networks (LSTMs) and fuzzy neural networks (FNNs). To be more precise, LSTMs are utilized to adjust vital parameters of the FFMFAC online. Additionally, due to the high nonlinear approximation capabilities of FNNs, pseudo gradient (PG) values of the controller are estimated online. EFFMFAC is characterized by utilizing the measured I/O data for the online training of all introduced neural networks and does not involve offline training and specific models of the controlled system. Finally, the rationality and superiority are verified by two simulations and a supporting ablation analysis. Five individual performance indices are given, and the experimental findings show that EFFMFAC outperforms all other methods. Especially compared with the FFMFAC, EFFMFAC reduces the [Formula: see text] by 21.69% and 11.21%, respectively, proving it to be applicable for SISO discrete-time nonlinear systems.