Cargando…
Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction
Machine learning results based on radiomic analysis are often not transferrable. A potential reason for this is the variability of radiomic features due to varying human made segmentations. Therefore, the aim of this study was to provide comprehensive inter-reader reliability analysis of radiomic fe...
Autores principales: | Müller-Franzes, Gustav, Nebelung, Sven, Schock, Justus, Haarburger, Christoph, Khader, Firas, Pedersoli, Federico, Schulze-Hagen, Maximilian, Kuhl, Christiane, Truhn, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871487/ https://www.ncbi.nlm.nih.gov/pubmed/35204338 http://dx.doi.org/10.3390/diagnostics12020247 |
Ejemplares similares
-
Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2020) -
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2021) -
Fast, Accurate, and Robust T2 Mapping of Articular Cartilage by Neural Networks
por: Müller-Franzes, Gustav, et al.
Publicado: (2022) -
Denoising diffusion probabilistic models for 3D medical image generation
por: Khader, Firas, et al.
Publicado: (2023) -
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
por: Han, Tianyu, et al.
Publicado: (2021)