Cargando…

Non-Destructive Measuring Systems for the Evaluation of High Oxygen Stored Poultry: Development of Headspace Gas Composition, Sensory and Microbiological Spoilage

As poultry is known to be a perishable food, the use-by date is set in such a way that food safety is guaranteed even with a higher initial bacterial count. This means, however, that some products are wasted, even if they are still safe to eat. Therefore, non-destructive measurement devices might be...

Descripción completa

Detalles Bibliográficos
Autores principales: Dold, Jasmin, Kehr, Caroline, Hollmann, Clarissa, Langowski, Horst-Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871491/
https://www.ncbi.nlm.nih.gov/pubmed/35206067
http://dx.doi.org/10.3390/foods11040592
Descripción
Sumario:As poultry is known to be a perishable food, the use-by date is set in such a way that food safety is guaranteed even with a higher initial bacterial count. This means, however, that some products are wasted, even if they are still safe to eat. Therefore, non-destructive measurement devices might be a good opportunity for individual shelf-life prediction, e.g., in retail. The aim of this study was therefore to use non-destructive measurement devices based on fluorescence quenching (oxygen detection) and mid-infrared laser spectroscopy (carbon dioxide detection) for the monitoring of high-oxygen-packed poultry in different storage conditions. During 15 days of storage, the gas composition of the headspace was assessed (non-destructively and destructively), while total plate count was monitored and a comprehensive sensory evaluation was performed by a trained panel. We were able to demonstrate that in most cases, non-destructive devices have comparable precision to destructive devices. For both storage conditions, the sensory attribute slime was correlated with reaching the critical microbiological value of 10(7) CFU/g; the attribute buttery was also useful for the prediction of regularly stored poultry. The change in the gas atmosphere as a sign of premature spoilage, however, was only possible for samples stored in irregular conditions.