Cargando…
Multivariate Functional Kernel Machine Regression and Sparse Functional Feature Selection
Motivated by mobile devices that record data at a high frequency, we propose a new methodological framework for analyzing a semi-parametric regression model that allow us to study a nonlinear relationship between a scalar response and multiple functional predictors in the presence of scalar covariat...
Autores principales: | Naiman, Joseph, Song, Peter Xuekun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871497/ https://www.ncbi.nlm.nih.gov/pubmed/35205498 http://dx.doi.org/10.3390/e24020203 |
Ejemplares similares
-
Multivariate functional group sparse regression: Functional predictor selection
por: Mahzarnia, Ali, et al.
Publicado: (2022) -
Correction: Multivariate functional group sparse regression: Functional predictor selection
por: Mahzarnia, Ali, et al.
Publicado: (2023) -
A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
Music Emotion Detection Using Hierarchical Sparse Kernel Machines
por: Chin, Yu-Hao, et al.
Publicado: (2014) -
A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
por: Sun, Shiquan, et al.
Publicado: (2014)