Cargando…

Downstream Approach Routes for the Purification and Recovery of Lactobionic Acid

The successful development of a lactobionic acid (LBA) bioconversion process on an industrial scale demands the selection of appropriate downstream methodological approaches to achieve product purification once the bioconversion of LBA is completed. These approaches depend on the nature of the subst...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarenkova, Inga, Sáez-Orviz, Sara, Rendueles, Manuel, Ciprovica, Inga, Zagorska, Jelena, Díaz, Mario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871510/
https://www.ncbi.nlm.nih.gov/pubmed/35206060
http://dx.doi.org/10.3390/foods11040583
Descripción
Sumario:The successful development of a lactobionic acid (LBA) bioconversion process on an industrial scale demands the selection of appropriate downstream methodological approaches to achieve product purification once the bioconversion of LBA is completed. These approaches depend on the nature of the substrate available for LBA production, and their necessary implementation could constitute a drawback when compared to the lesser effort required in downstream approaches in the production of LBA obtained by chemical synthesis from refined lactose. Thus, the aim of this research is to separate LBA from an acid whey substrate after bioconversion with Pseudomonas taetrolens. Freeze drying, crystallization, adsorption with activated carbon, microfiltration, centrifugation, and precipitation with 96% (v/v) ethanol were carried out to separate and purify LBA. The closest product to commercial LBA was obtained using precipitation with ethanol, obtaining a white powder with 95 ± 2% LBA concentration. The procedure described in this paper could help to produce LBA on an industrial scale via microbial bioconversion from acid whey, developing a promising biotechnological approach for lactose conversion.