Cargando…
Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis
In this study, we evaluated the improvement of image quality in digital breast tomosynthesis under low-radiation dose conditions of pre-reconstruction processing using conditional generative adversarial networks [cGAN (pix2pix)]. Pix2pix pre-reconstruction processing with filtered back projection (F...
Autores principales: | Gomi, Tsutomu, Kijima, Yukie, Kobayashi, Takayuki, Koibuchi, Yukio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871529/ https://www.ncbi.nlm.nih.gov/pubmed/35204582 http://dx.doi.org/10.3390/diagnostics12020495 |
Ejemplares similares
-
Use of a Total Variation Minimization Iterative Reconstruction Algorithm to Evaluate Reduced Projections during Digital Breast Tomosynthesis
por: Gomi, Tsutomu, et al.
Publicado: (2018) -
Usefulness of a Metal Artifact Reduction Algorithm in Digital Tomosynthesis Using a Combination of Hybrid Generative Adversarial Networks
por: Gomi, Tsutomu, et al.
Publicado: (2021) -
X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection
por: Gomi, Tsutomu
Publicado: (2011) -
Average absorbed breast dose (2ABD): an easy radiation dose index for digital breast tomosynthesis
por: Traino, Antonio C., et al.
Publicado: (2020) -
A generative adversarial network-based abnormality detection using only normal images for model training with application to digital breast tomosynthesis
por: Swiecicki, Albert, et al.
Publicado: (2021)