Cargando…
Length of Stay Analysis of COVID-19 Hospitalizations Using a Count Regression Model and Quantile Regression: A Study in Bologna, Italy
This study aimed to identify and explore the hospital admission risk factors associated with the length of stay (LoS) by applying a relatively novel statistical method for count data using predictors among COVID-19 patients in Bologna, Italy. The second goal of this study was to model the LoS of COV...
Autores principales: | Zeleke, Addisu Jember, Moscato, Serena, Miglio, Rossella, Chiari, Lorenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871974/ https://www.ncbi.nlm.nih.gov/pubmed/35206411 http://dx.doi.org/10.3390/ijerph19042224 |
Ejemplares similares
-
Machine learning-based prediction of hospital prolonged length of stay admission at emergency department: a Gradient Boosting algorithm analysis
por: Zeleke, Addisu Jember, et al.
Publicado: (2023) -
Quantile regression
por: Koenker, Roger
Publicado: (2005) -
Emergency Department Visits and Summer Temperatures in Bologna, Northern Italy, 2010–2019: A Case-Crossover Study and Geographically Weighted Regression Methods
por: Guolo, Francesco, et al.
Publicado: (2022) -
Handbook of quantile regression
por: Koenker, Roger, et al.
Publicado: (2017) -
Factors associated with length of stay in hospital among the elderly patients using count regression models
por: Orooji, Arezoo, et al.
Publicado: (2021)