Cargando…
EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction
Classifying emotional states is critical for brain–computer interfaces and psychology-related domains. In previous studies, researchers have tried to identify emotions using neural data such as electroencephalography (EEG) signals or brain functional magnetic resonance imaging (fMRI). In this study,...
Autores principales: | Jung, Dawoon, Choi, Junggu, Kim, Jeongjae, Cho, Seoyoung, Han, Sanghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872045/ https://www.ncbi.nlm.nih.gov/pubmed/35206341 http://dx.doi.org/10.3390/ijerph19042158 |
Ejemplares similares
-
Identification of Risk Factors for Suicidal Ideation and Attempt Based on Machine Learning Algorithms: A Longitudinal Survey in Korea (2007–2019)
por: Choi, Junggu, et al.
Publicado: (2021) -
Validation of depression determinants in caregivers of dementia patients with machine learning algorithms and statistical model
por: Cho, Kangrim, et al.
Publicado: (2023) -
Investigation of factors associated with mental health during the early part of the COVID-19 pandemic in South Korea based on machine learning algorithms: A cohort study
por: Choi, Junggu, et al.
Publicado: (2023) -
Identification of emotions evoked by music via spatial-temporal transformer in multi-channel EEG signals
por: Zhou, Yanan, et al.
Publicado: (2023) -
Classification of Complex Emotions Using EEG and Virtual Environment: Proof of Concept and Therapeutic Implication
por: De Filippi, Eleonora, et al.
Publicado: (2021)