Cargando…

Increase in Ribosomal Fidelity Benefits Salmonella upon Bile Salt Exposure

Translational fidelity is maintained by multiple quality control steps in all three domains of life. Increased translational errors (mistranslation) occur due to genetic mutations and external stresses. Severe mistranslation is generally harmful, but moderate levels of mistranslation may be favored...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyu, Zhihui, Ling, Jiqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872077/
https://www.ncbi.nlm.nih.gov/pubmed/35205229
http://dx.doi.org/10.3390/genes13020184
Descripción
Sumario:Translational fidelity is maintained by multiple quality control steps in all three domains of life. Increased translational errors (mistranslation) occur due to genetic mutations and external stresses. Severe mistranslation is generally harmful, but moderate levels of mistranslation may be favored under certain conditions. To date, little is known about the link between translational fidelity and host–pathogen interactions. Salmonella enterica can survive in the gall bladder during systemic or chronic infections due to bile resistance. Here we show that increased translational fidelity contributes to the fitness of Salmonella upon bile salt exposure, and the improved fitness depends on an increased level of intracellular adenosine triphosphate (ATP). Our work thus reveals a previously unknown linkage between translational fidelity and bacterial fitness under bile stress.