Cargando…

Study on the Maximum Safe Instantaneous Input of the Steering Wheel against Rollover for Trucks on Horizontal Curves

Truck rollover crashes on horizontal curves have been recognized as one of the most serious types of crashes. Driver’s instantaneous emergency steering maneuvers (DIESM) play an important role in truck rollover crashes, but have not received much attention. In the present study, the radius of curvat...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jinliang, Xin, Tian, Gao, Chao, Sun, Zhenhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872084/
https://www.ncbi.nlm.nih.gov/pubmed/35206222
http://dx.doi.org/10.3390/ijerph19042025
Descripción
Sumario:Truck rollover crashes on horizontal curves have been recognized as one of the most serious types of crashes. Driver’s instantaneous emergency steering maneuvers (DIESM) play an important role in truck rollover crashes, but have not received much attention. In the present study, the radius of curvature of the actual vehicle travel path (AVTP) under DIESM was calculated based on the transient bicycle model. Rollover margins were used to evaluate the truck-rollover potential under DIESM. To calculate rollover margins, the lateral acceleration under DIESM was calculated based on the radius of the curvature of the AVTP. A rollover threshold formula was introduced to calculate vehicle’s rollover thresholds by distinguishing two turning conditions. According to rollover margins, the maximum safe instantaneous input of the steering wheel against rollover for trucks was obtained. Moreover, theoretical results were verified by computer simulation. Results showed: (1) The maximum safe instantaneous inputs of the steering wheel were 259°, 212°, 182°, 162°and 147°, respectively, at speeds of 60 km/h, 70 km/h, 80 km, 90 km and 100 km when the superelevation rate was 0, and (2) superelevation significantly affected truck-rollover potential; the worst turning condition was turning from the inside to the outside of the curve. Due to the consideration of the wheelbase, the centroid position, the tire’s cornering stiffness and the suspension roll gain, the prediction results were more accurate.