Cargando…

Study on Thermal Stability of Gel Foam Co-Stabilized by Hydrophilic Silica Nanoparticles and Surfactants

The combination of nanoparticles (NP) and surfactant has been intensively studied to improve the thermal stability and optimize the performance of foams. This study focuses on the influence of silica NPs with different concentration on the thermal stability of gel foams based on a mixture of fluoroc...

Descripción completa

Detalles Bibliográficos
Autores principales: Sheng, Youjie, Peng, Yunchuan, Zhang, Shanwen, Guo, Ying, Ma, Li, Wang, Qiuhong, Zhang, Hanling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872208/
https://www.ncbi.nlm.nih.gov/pubmed/35200504
http://dx.doi.org/10.3390/gels8020123
Descripción
Sumario:The combination of nanoparticles (NP) and surfactant has been intensively studied to improve the thermal stability and optimize the performance of foams. This study focuses on the influence of silica NPs with different concentration on the thermal stability of gel foams based on a mixture of fluorocarbon (FS-50) and hydrocarbon (APG0810) surfactants. The surface activity, conductivity, viscosity, and foaming ability of the APG0810/FS-50/NPs dispersions are characterized. The effects of NP concentration on coarsening, drainage, and decay, as well as of the gel foams under thermal action, are systematically studied. Results show that NP concentration has a significant effect on the molecular interactions of the APG0810/FS-50/NP dispersions. The surface tension and conductivity of the dispersions decrease but the viscosity increases with the increase in NP concentration. The foaming ability of APG0810/FS-50 solution is reduced by the addition of NPs and decreases with the increase in NP concentration. The coarsening, drainage, and decay of the gel foams under thermal action slow down significantly with increasing NP concentration. The thermal stability of the gel foams increases with the addition of NPs and further increases with the increase in NP concentration. This study provides a theoretical guidance for the application for gel foams containing NPs and surfactants in fire-extinguishing agents.