Cargando…
Generation of Realistic Gene Regulatory Networks by Enriching for Feed-Forward Loops
The regulatory relationships between genes and proteins in a cell form a gene regulatory network (GRN) that controls the cellular response to changes in the environment. A number of inference methods to reverse engineer the original GRN from large-scale expression data have recently been developed....
Autores principales: | Zhivkoplias, Erik K., Vavulov, Oleg, Hillerton, Thomas, Sonnhammer, Erik L. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872634/ https://www.ncbi.nlm.nih.gov/pubmed/35222536 http://dx.doi.org/10.3389/fgene.2022.815692 |
Ejemplares similares
-
GRNbenchmark - a web server for benchmarking directed gene regulatory network inference methods
por: Seçilmiş, Deniz, et al.
Publicado: (2022) -
Inferring the experimental design for accurate gene regulatory network inference
por: Seçilmiş, Deniz, et al.
Publicado: (2021) -
Fast and accurate gene regulatory network inference by normalized least squares regression
por: Hillerton, Thomas, et al.
Publicado: (2022) -
Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference
por: Seçilmiş, Deniz, et al.
Publicado: (2022) -
Knowledge of the perturbation design is essential for accurate gene regulatory network inference
por: Seçilmiş, Deniz, et al.
Publicado: (2022)