Cargando…
Personalized Music Recommendation Algorithm Based on Spark Platform
Aiming at the shortcomings of traditional recommendation algorithms in dealing with large-scale music data, such as low accuracy and poor real-time performance, a personalized recommendation algorithm based on the Spark platform is proposed. The algorithm is based on the Spark platform. The K-means...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872663/ https://www.ncbi.nlm.nih.gov/pubmed/35222633 http://dx.doi.org/10.1155/2022/7157075 |
Sumario: | Aiming at the shortcomings of traditional recommendation algorithms in dealing with large-scale music data, such as low accuracy and poor real-time performance, a personalized recommendation algorithm based on the Spark platform is proposed. The algorithm is based on the Spark platform. The K-means clustering model between users and music is constructed using an AFSA (artificial fish swarm algorithm) to optimize the initial centroids of K-means to improve the clustering effect. Based on the scoring relationship between users and users and users and music attributes, the collaborative filtering algorithm is applied to calculate the correlation between users to achieve accurate recommendations. Finally, the performance of the designed recommendation model is validated by deploying the recommendation model on the Spark platform using the Yahoo Music dataset and online music platform dataset. The experimental results show that the use of improved AFSA can complete the optimization of K-means clustering centroids with good clustering results; combined with the distributed fast computing capability of Spark platform with multiple nodes, the recommendation accuracy has better performance than traditional recommendation algorithms; especially when dealing with large-scale music data, the recommendation accuracy and real-time performance are higher, which meet the current demand of personalized music recommendation. |
---|