Cargando…
Attenuated Structural Transformation of Indaconitine during Sand Frying Process and Anti-Arrhythmic Effects of Its Transformed Products
The transformation pathways of diterpenoid alkaloids have been clarified clearly in the boiling and steaming process, but remain to be determined in the sand frying process. The aims of the study were to investigate the transformation pathways of indaconitine in the sand frying process, as well as e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872670/ https://www.ncbi.nlm.nih.gov/pubmed/35222676 http://dx.doi.org/10.1155/2022/8606459 |
Sumario: | The transformation pathways of diterpenoid alkaloids have been clarified clearly in the boiling and steaming process, but remain to be determined in the sand frying process. The aims of the study were to investigate the transformation pathways of indaconitine in the sand frying process, as well as examine the cardiotoxicity and anti-arrhythmic activity of indaconitine and its transformed products. The transformed product was separated by column chromatography, and the structure was identified by (1)H NMR, (13)C NMR, and HR-ESI-MS. The cardiotoxicity of indaconitine and its transformed products was clarified by observing the electrocardiogram (ECG) changes at the same dose. Furthermore, the anti-arrhythmic activity of the transformed products was investigated using an aconitine-induced rat arrhythmia model. Consequently, Δ(15(16))-16-demethoxyindaconitine, a new diterpenoid alkaloid, was isolated from processed indaconitine. Intravenous injection of 0.06 mg/kg indaconitine induced arrhythmias in SD rats, while Δ(15(16))-16-demethoxyindaconitine did not exhibit arrhythmias at the same dose. In the anti-arrhythmic assay, mithaconitine, obtained in the previous research, together with Δ(15(16))-16-demethoxyindaconitine, could dose-dependently delay the onset time of ventricular premature beat (VPB) and reduce the incidence of ventricular tachycardia (VT), combined with the increasing arrhythmia inhibition rate, exhibiting strong anti-arrhythmic activities. These results indicated that two or more pathways exist in the sand frying process, and the transformed products exhibited lower cardiotoxicity and strong anti-arrhythmic activities, which had the possibility of being developed into anti-arrhythmic drugs. |
---|