Cargando…
The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay
The role of N6-methyladenosine (m(6)A) modifications has increasingly been associated with a diverse set of roles in modulating viruses and influencing the outcomes of viral infection. Here, we report that the landscape of m(6)A deposition is drastically shifted during Kaposi’s sarcoma–associated he...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872733/ https://www.ncbi.nlm.nih.gov/pubmed/35177478 http://dx.doi.org/10.1073/pnas.2116662119 |
_version_ | 1784657311261786112 |
---|---|
author | Macveigh-Fierro, Daniel Cicerchia, Angelina Cadorette, Ashley Sharma, Vasudha Muller, Mandy |
author_facet | Macveigh-Fierro, Daniel Cicerchia, Angelina Cadorette, Ashley Sharma, Vasudha Muller, Mandy |
author_sort | Macveigh-Fierro, Daniel |
collection | PubMed |
description | The role of N6-methyladenosine (m(6)A) modifications has increasingly been associated with a diverse set of roles in modulating viruses and influencing the outcomes of viral infection. Here, we report that the landscape of m(6)A deposition is drastically shifted during Kaposi’s sarcoma–associated herpesvirus (KSHV) lytic infection for both viral and host transcripts. In line with previous reports, we also saw an overall decrease in host methylation in favor of viral messenger RNA (mRNA), along with 5′ hypomethylation and 3′ hypermethylation. During KSHV lytic infection, a major shift in overall mRNA abundance is driven by the viral endoribonuclease SOX, which induces the decay of greater than 70% of transcripts. Here, we reveal that interlukin-6 (IL-6) mRNA, a well-characterized, SOX-resistant transcript, is m(6)A modified during lytic infection. Furthermore, we show that this modification falls within the IL-6 SOX resistance element, an RNA element in the IL-6 3′ untranslated region (UTR) that was previously shown to be sufficient for protection from SOX cleavage. We show that the presence of this m(6)A modification is essential to confer SOX resistance to the IL-6 mRNA. We next show that this modification recruits the m(6)A reader YTHDC2 and found that YTHDC2 is necessary for the escape of the IL-6 transcript. These results shed light on how the host cell has evolved to use RNA modifications to circumvent viral manipulation of RNA fate during KSHV infection. |
format | Online Article Text |
id | pubmed-8872733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-88727332022-08-17 The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay Macveigh-Fierro, Daniel Cicerchia, Angelina Cadorette, Ashley Sharma, Vasudha Muller, Mandy Proc Natl Acad Sci U S A Biological Sciences The role of N6-methyladenosine (m(6)A) modifications has increasingly been associated with a diverse set of roles in modulating viruses and influencing the outcomes of viral infection. Here, we report that the landscape of m(6)A deposition is drastically shifted during Kaposi’s sarcoma–associated herpesvirus (KSHV) lytic infection for both viral and host transcripts. In line with previous reports, we also saw an overall decrease in host methylation in favor of viral messenger RNA (mRNA), along with 5′ hypomethylation and 3′ hypermethylation. During KSHV lytic infection, a major shift in overall mRNA abundance is driven by the viral endoribonuclease SOX, which induces the decay of greater than 70% of transcripts. Here, we reveal that interlukin-6 (IL-6) mRNA, a well-characterized, SOX-resistant transcript, is m(6)A modified during lytic infection. Furthermore, we show that this modification falls within the IL-6 SOX resistance element, an RNA element in the IL-6 3′ untranslated region (UTR) that was previously shown to be sufficient for protection from SOX cleavage. We show that the presence of this m(6)A modification is essential to confer SOX resistance to the IL-6 mRNA. We next show that this modification recruits the m(6)A reader YTHDC2 and found that YTHDC2 is necessary for the escape of the IL-6 transcript. These results shed light on how the host cell has evolved to use RNA modifications to circumvent viral manipulation of RNA fate during KSHV infection. National Academy of Sciences 2022-02-17 2022-02-22 /pmc/articles/PMC8872733/ /pubmed/35177478 http://dx.doi.org/10.1073/pnas.2116662119 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Macveigh-Fierro, Daniel Cicerchia, Angelina Cadorette, Ashley Sharma, Vasudha Muller, Mandy The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay |
title | The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay |
title_full | The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay |
title_fullStr | The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay |
title_full_unstemmed | The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay |
title_short | The m(6)A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay |
title_sort | m(6)a reader ythdc2 is essential for escape from kshv sox-induced rna decay |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872733/ https://www.ncbi.nlm.nih.gov/pubmed/35177478 http://dx.doi.org/10.1073/pnas.2116662119 |
work_keys_str_mv | AT macveighfierrodaniel them6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT cicerchiaangelina them6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT cadoretteashley them6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT sharmavasudha them6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT mullermandy them6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT macveighfierrodaniel m6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT cicerchiaangelina m6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT cadoretteashley m6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT sharmavasudha m6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay AT mullermandy m6areaderythdc2isessentialforescapefromkshvsoxinducedrnadecay |