Cargando…

Forecasting COVID-19 cases by assessing control-intervention effects in Republic of Korea: A statistical modeling approach

The Coronavirus disease of 2019 (COVID-19) is an ongoing public health concern worldwide. COVID-19 infections continue to occur and thus, it is important to assess the effects of various public health measures. This study aims to forecast COVID-19 cases by geographical area in Korea, based on the ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hyojung, Jang, Geunsoo, Cho, Giphil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872739/
http://dx.doi.org/10.1016/j.aej.2022.02.037
Descripción
Sumario:The Coronavirus disease of 2019 (COVID-19) is an ongoing public health concern worldwide. COVID-19 infections continue to occur and thus, it is important to assess the effects of various public health measures. This study aims to forecast COVID-19 cases by geographical area in Korea, based on the effects of different control-intervention intensities (CII). Methods involved estimating the effective reproduction number ([Formula: see text]) by Korean geographical area using the SEIHR model, and the instantaneous reproduction number using statistical model, comparing the epidemic curves and high-, intermediate-, and low-intensity control interventions. Here, short-term four-week forecasts by geographical area were conducted. The mean of delayed instantaneous reproduction number was estimated at 1.36, 1.03, and 0.93 for the low-, intermediate-, and high-intensity control interventions, respectively, in the capital area of Korea from July 16, 2020, to March 4, 2021. The COVID-19 cases were forecasted with an accuracy rate of 11.28%, 13.62%, and 20.19% MAPE in Korea, including both the capital and non-capital areas. High-intensity control measures significantly reduced the reproduction number to be less than one. The proposed model forecasted COVID-19 transmission dynamics with good accuracy and interpretability. High-intensity control intervention, active case detection, and isolation efforts should be maintained to control the pandemic.