Cargando…
Fault-Tolerant indoor localization based on speed conscious recurrent neural network using Kullback–Leibler divergence
IoT services are the basic building blocks of smart cities, and some of such crucial services are provided by smart buildings. Most of the services like smart meters, indoor navigation, lighting control, etc., which contribute to smart buildings, need the locations of people or objects within the bu...
Autores principales: | Varma, Pothuri Surendra, Anand, Veena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872895/ https://www.ncbi.nlm.nih.gov/pubmed/35233260 http://dx.doi.org/10.1007/s12083-022-01301-y |
Ejemplares similares
-
Kullback–Leibler divergence and the Pareto–Exponential approximation
por: Weinberg, G. V.
Publicado: (2016) -
Computation of Kullback–Leibler Divergence in Bayesian Networks
por: Moral, Serafín, et al.
Publicado: (2021) -
A Satellite Incipient Fault Detection Method Based on Decomposed Kullback–Leibler Divergence
por: Zhang, Ge, et al.
Publicado: (2021) -
Kullback Leibler divergence in complete bacterial and phage genomes
por: Akhter, Sajia, et al.
Publicado: (2017) -
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
por: Megías, Alberto, et al.
Publicado: (2020)