Cargando…
Machine learning-based risk model using (123)I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure
BACKGROUND: Cardiac sympathetic dysfunction is closely associated with cardiac mortality in patients with chronic heart failure (CHF). We analyzed the ability of machine learning incorporating (123)I-metaiodobenzylguanidine (MIBG) to differentially predict risk of life-threatening arrhythmic events...
Autores principales: | Nakajima, Kenichi, Nakata, Tomoaki, Doi, Takahiro, Tada, Hayato, Maruyama, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873155/ https://www.ncbi.nlm.nih.gov/pubmed/32410060 http://dx.doi.org/10.1007/s12350-020-02173-6 |
Ejemplares similares
-
A prediction model for 5-year cardiac mortality in patients with chronic heart failure using (123)I-metaiodobenzylguanidine imaging
por: Nakajima, Kenichi, et al.
Publicado: (2014) -
Machine learning-based prediction of conversion coefficients for I-123 metaiodobenzylguanidine heart-to-mediastinum ratio
por: Okuda, Koichi, et al.
Publicado: (2023) -
Three-Dimensional Heart Segmentation and Absolute Quantitation of Cardiac (123)I-metaiodobenzylguanidine Sympathetic Imaging Using SPECT/CT
por: Saito, Shintaro, et al.
Publicado: (2023) -
Validation of 2-year (123)I-meta-iodobenzylguanidine-based cardiac mortality risk model in chronic heart failure
por: Nakajima, Kenichi, et al.
Publicado: (2018) -
Can cardiac iodine-123 metaiodobenzylguanidine imaging contribute to risk stratification in heart failure patients?
por: Bax, Jeroen J., et al.
Publicado: (2008)