Cargando…
Automated feature-based grading and progression analysis of diabetic retinopathy
BACKGROUND: In diabetic retinopathy (DR) screening programmes feature-based grading guidelines are used by human graders. However, recent deep learning approaches have focused on end to end learning, based on labelled data at the whole image level. Most predictions from such software offer a direct...
Autores principales: | Al-Turk, Lutfiah, Wawrzynski, James, Wang, Su, Krause, Paul, Saleh, George M., Alsawadi, Hend, Alshamrani, Abdulrahman Zaid, Peto, Tunde, Bastawrous, Andrew, Li, Jingren, Tang, Hongying Lilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873224/ https://www.ncbi.nlm.nih.gov/pubmed/33731888 http://dx.doi.org/10.1038/s41433-021-01415-2 |
Ejemplares similares
-
Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations
por: Al Turk, Lutfiah, et al.
Publicado: (2020) -
Learning to Discover Explainable Clinical Features With Minimum Supervision
por: Al Turk, Lutfiah, et al.
Publicado: (2022) -
An Automated Detection System for Microaneurysms That Is Effective across Different Racial Groups
por: Saleh, George Michael, et al.
Publicado: (2016) -
The Reading of Components of Diabetic Retinopathy: An Evolutionary Approach for Filtering Normal Digital Fundus Imaging in Screening and Population Based Studies
por: Tang, Hongying Lilian, et al.
Publicado: (2013) -
Correction: The Reading of Components of Diabetic Retinopathy: An Evolutionary Approach for Filtering Normal Digital Fundus Imaging in Screening and Population Based Studies
por: Tang, Hongying Lilian, et al.
Publicado: (2014)