Cargando…
Normalization of photoplethysmography using deep neural networks for individual and group comparison
Photoplethysmography (PPG) is easy to measure and provides important parameters related to heart rate and arrhythmia. However, automated PPG methods have not been developed because of their susceptibility to motion artifacts and differences in waveform characteristics among individuals. With increas...
Autores principales: | Kim, Ji Woon, Choi, Seong-Wook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873247/ https://www.ncbi.nlm.nih.gov/pubmed/35210522 http://dx.doi.org/10.1038/s41598-022-07107-5 |
Ejemplares similares
-
A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal
por: Lim, Hyunjun, et al.
Publicado: (2019) -
COVID-19 Detection Using Photoplethysmography and Neural Networks
por: Lombardi, Sara, et al.
Publicado: (2023) -
Photoplethysmography in Normal and Pathological Sleep
por: Vulcan, Ramona S., et al.
Publicado: (2021) -
Multiclass Arrhythmia Detection and Classification From Photoplethysmography Signals Using a Deep Convolutional Neural Network
por: Liu, Zengding, et al.
Publicado: (2022) -
Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network
por: Botina-Monsalve, Deivid, et al.
Publicado: (2022)