Cargando…
Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain–computer interface
The brain–computer interface (BCI) provides an alternate means of communication between the brain and external devices by recognizing the brain activities and translating them into external commands. The functional Near-Infrared Spectroscopy (fNIRS) is becoming popular as a non-invasive modality for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873341/ https://www.ncbi.nlm.nih.gov/pubmed/35210460 http://dx.doi.org/10.1038/s41598-022-06805-4 |
Sumario: | The brain–computer interface (BCI) provides an alternate means of communication between the brain and external devices by recognizing the brain activities and translating them into external commands. The functional Near-Infrared Spectroscopy (fNIRS) is becoming popular as a non-invasive modality for brain activity detection. The recent trends show that deep learning has significantly enhanced the performance of the BCI systems. But the inherent bottleneck for deep learning (in the domain of BCI) is the requirement of the vast amount of training data, lengthy recalibrating time, and expensive computational resources for training deep networks. Building a high-quality, large-scale annotated dataset for deep learning-based BCI systems is exceptionally tedious, complex, and expensive. This study investigates the novel application of transfer learning for fNIRS-based BCI to solve three objective functions (concerns), i.e., the problem of insufficient training data, reduced training time, and increased accuracy. We applied symmetric homogeneous feature-based transfer learning on convolutional neural network (CNN) designed explicitly for fNIRS data collected from twenty-six (26) participants performing the n-back task. The results suggested that the proposed method achieves the maximum saturated accuracy sooner and outperformed the traditional CNN model on averaged accuracy by 25.58% in the exact duration of training time, reducing the training time, recalibrating time, and computational resources. |
---|