Cargando…

18β-Glycyrrhetinic acid suppresses allergic airway inflammation through NF-κB and Nrf2/HO-1 signaling pathways in asthma mice

18β-Glycyrrhetinic acid (18β-GA), the main bioactive component of Glycyrrhizae Radix, is considered a promising anti-inflammatory and antioxidant agent. Here, we evaluated the anti-inflammatory and antioxidant effects of 18β-GA in an ovalbumin (OVA)-induced asthma mouse model, and examined the role...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jianming, Xu, Yanqi, Yan, Minyu, Yu, Yingjie, Guo, Yongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873505/
https://www.ncbi.nlm.nih.gov/pubmed/35210449
http://dx.doi.org/10.1038/s41598-022-06455-6
Descripción
Sumario:18β-Glycyrrhetinic acid (18β-GA), the main bioactive component of Glycyrrhizae Radix, is considered a promising anti-inflammatory and antioxidant agent. Here, we evaluated the anti-inflammatory and antioxidant effects of 18β-GA in an ovalbumin (OVA)-induced asthma mouse model, and examined the role of NF-κB and Nrf2/HO-1 signaling pathways. The histopathological changes of lung tissue in mouse were assessed by histochemical staining and counting of inflammatory cells. The levels of IgE and inflammatory cytokines in the bronchoalveolar lavage fluid of mice were detected by ELISA. In OVA-induced asthmatic mice, 18β-GA treatment can significantly improve lung function and reduce lung inflammation including infiltration of inflammatory cells. In addition, 18β-GA reduced the OVA-induced NF-κB phosphorylation in lungs of mice while increasing the expression of Nrf2 and HO-1. These results indicate that 18β-GA protects OVA-induced allergic inflammation of airway by inhibiting phosphorylation of NF-κB and enhancing the Nrf2/HO-1 pathway, and serves as a potential treatment option for allergic inflammation of airway.