Cargando…
Machine learning for artemisinin resistance in malaria treatment across in vivo-in vitro platforms
Drug resistance has been rapidly evolving with regard to the first-line malaria treatment, artemisinin-based combination therapies. It has been an open question whether predictive models for this drug resistance status can be generalized across in vivo-in vitro transcriptomic measurements. In this s...
Autores principales: | Zhang, Hanrui, Guo, Jiantao, Li, Hongyang, Guan, Yuanfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873607/ https://www.ncbi.nlm.nih.gov/pubmed/35243261 http://dx.doi.org/10.1016/j.isci.2022.103910 |
Ejemplares similares
-
Ensemble machine learning modeling for the prediction of artemisinin resistance in malaria
por: Ford, Colby T., et al.
Publicado: (2020) -
Treatment Stratification of Patients with Metastatic Castration-Resistant Prostate Cancer by Machine Learning
por: Deng, Kaiwen, et al.
Publicado: (2019) -
Selection of safe artemisinin derivatives using a machine learning-based cardiotoxicity platform and in vitro and in vivo validation
por: Kadioglu, Onat, et al.
Publicado: (2021) -
Timesias: A machine learning pipeline for predicting outcomes from time-series clinical records
por: Zhang, Hanrui, et al.
Publicado: (2021) -
Deep Learning Identifies Digital Biomarkers for Self-Reported Parkinson's Disease
por: Zhang, Hanrui, et al.
Publicado: (2020)