Cargando…
Comparison between short-term stress and long-term adaptive responses reveal common paths to molecular adaptation
The phenotypic plasticity in responses to short-term stress can provide clues for understanding the adaptive fixation mechanism of genetic variation during long-term exposure to extreme environments. However, few studies have compared short-term stress responses with long-term evolutionary patterns;...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873613/ https://www.ncbi.nlm.nih.gov/pubmed/35243257 http://dx.doi.org/10.1016/j.isci.2022.103899 |
Sumario: | The phenotypic plasticity in responses to short-term stress can provide clues for understanding the adaptive fixation mechanism of genetic variation during long-term exposure to extreme environments. However, few studies have compared short-term stress responses with long-term evolutionary patterns; in particular, no interactions between the two processes have been evaluated in high-altitude environment. We performed RNA sequencing in embryo fibroblasts derived from great tits and mice to explore transcriptional responses after exposure to simulated high-altitude environmental stresses. Transcriptional changes of genes associated with metabolic pathways were identified in both bird and mice cells after short-term stress responses. Genomic comparisons among long-term highland tits and mammals and their lowland relatives revealed similar pathways (e.g., metabolic pathways) with that initiated under short-term stress transcriptional responses in vitro. These findings highlight the indicative roles of short-term stress in the long-term adaptation, and adopt common paths to molecular adaptation in mouse and bird cells. |
---|