Cargando…
Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition
Recognition accuracy and response time are both critically essential ahead of building the practical electroencephalography (EEG)-based brain–computer interface (BCI). However, recent approaches have compromised either the classification accuracy or the responding time. This paper presents a novel d...
Autores principales: | Hou, Yimin, Jia, Shuyue, Lun, Xiangmin, Zhang, Shu, Chen, Tao, Wang, Fang, Lv, Jinglei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873790/ https://www.ncbi.nlm.nih.gov/pubmed/35223807 http://dx.doi.org/10.3389/fbioe.2021.706229 |
Ejemplares similares
-
Dynamic pruning group equivariant network for motor imagery EEG recognition
por: Tang, Xianlun, et al.
Publicado: (2023) -
Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory
por: Yuan, Lu, et al.
Publicado: (2023) -
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
por: Wang, Shudi, et al.
Publicado: (2022) -
Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction
por: Wang, Xianfang, et al.
Publicado: (2020) -
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020)