Cargando…
Artificial Neural Network Based Non-linear Transformation of High-Frequency Returns for Volatility Forecasting
This paper uses Long Short Term Memory Recurrent Neural Networks to extract information from the intraday high-frequency returns to forecast daily volatility. Applied to the IBM stock, we find significant improvements in the forecasting performance of models that use this extracted information compa...
Autor principal: | Mücher, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873984/ https://www.ncbi.nlm.nih.gov/pubmed/35224478 http://dx.doi.org/10.3389/frai.2021.787534 |
Ejemplares similares
-
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Pancreatic Cancer Prediction Through an Artificial Neural Network
por: Muhammad, Wazir, et al.
Publicado: (2019) -
Understanding Robustness and Generalization of Artificial Neural Networks Through Fourier Masks
por: Karantzas, Nikos, et al.
Publicado: (2022) -
Direct domain adaptation through reciprocal linear transformations
por: Alkhalifah, Tariq, et al.
Publicado: (2022) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023)