Cargando…
Implementation of a Convolutional Neural Network for Eye Blink Artifacts Removal From the Electroencephalography Signal
Electroencephalography (EEG) signals are disrupted by technical and physiological artifacts. One of the most common artifacts is the natural activity that results from the movement of the eyes and the blinking of the subject. Eye blink artifacts (EB) spread across the entire head surface and make EE...
Autores principales: | Jurczak, Marcin, Kołodziej, Marcin, Majkowski, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874023/ https://www.ncbi.nlm.nih.gov/pubmed/35221897 http://dx.doi.org/10.3389/fnins.2022.782367 |
Ejemplares similares
-
In the Blink of an Eye: Neural Responses Elicited to Viewing the Eye Blinks of Another Individual
por: Brefczynski-Lewis, Julie A., et al.
Publicado: (2011) -
The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer's disease diagnosis
por: Cassani, Raymundo, et al.
Publicado: (2014) -
Eye-Tracking Analysis for Emotion Recognition
por: Tarnowski, Paweł, et al.
Publicado: (2020) -
Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016) -
Eye-blink artifact removal from single channel EEG with k-means and SSA
por: Maddirala, Ajay Kumar, et al.
Publicado: (2021)