Cargando…
Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations
The development of biologically active multifunctional hydrogel wound dressings can assist effectively to wound regeneration and also has influenced multiple functions on wound injury. Herein, we designed a carbon‐based composited injectable silk fibroin hydrogel as multifunctional wound dressing to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874045/ https://www.ncbi.nlm.nih.gov/pubmed/34414663 http://dx.doi.org/10.1111/iwj.13665 |
_version_ | 1784657595229798400 |
---|---|
author | Dong, Meiping Mao, Yi Zhao, Zhiwei Zhang, Jinbo Zhu, Lipeng Chen, Linlu Cao, Liexiang |
author_facet | Dong, Meiping Mao, Yi Zhao, Zhiwei Zhang, Jinbo Zhu, Lipeng Chen, Linlu Cao, Liexiang |
author_sort | Dong, Meiping |
collection | PubMed |
description | The development of biologically active multifunctional hydrogel wound dressings can assist effectively to wound regeneration and also has influenced multiple functions on wound injury. Herein, we designed a carbon‐based composited injectable silk fibroin hydrogel as multifunctional wound dressing to provide effective anti‐bacterial, cell compatibility and in vivo wound closure actions. Importantly, the fabricated injectable hydrogel exhibit sustained drug delivery properties, anti‐oxidant and self‐healing abilities, which confirm that composition of hydrogel is highly beneficial to tissue adhesions and burn wound regeneration ability. Frequently, designed injectable hydrogel can be injected into deep and irregular burn wound sites and would provide rapid self‐healing and protection from infection environment with thoroughly filled wound area. Meanwhile, incorporated carbon nanofillers improve injectable hydrogel strength and also offer high fluid uptake to hydrogel when applied on the wound sites. In vitro MTT cytotoxicity assay on human fibroblast cell lines establish outstanding cytocompatibility of the injectable hydrogel and also have capability to support cell growth and proliferations. In vivo burn wound animal model results demonstrate that the hydrogel dressings predominantly influenced enhanced wound contraction and also promoted greater collagen deposition, granulation tissue thickness and vascularization. This investigation's outcome could open a new pathway to fabricate multifunctional biopolymeric hydrogel for quicker burn wound therapy and effectively prevents microenvironment bacterial infections. |
format | Online Article Text |
id | pubmed-8874045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-88740452022-02-28 Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations Dong, Meiping Mao, Yi Zhao, Zhiwei Zhang, Jinbo Zhu, Lipeng Chen, Linlu Cao, Liexiang Int Wound J Original Articles The development of biologically active multifunctional hydrogel wound dressings can assist effectively to wound regeneration and also has influenced multiple functions on wound injury. Herein, we designed a carbon‐based composited injectable silk fibroin hydrogel as multifunctional wound dressing to provide effective anti‐bacterial, cell compatibility and in vivo wound closure actions. Importantly, the fabricated injectable hydrogel exhibit sustained drug delivery properties, anti‐oxidant and self‐healing abilities, which confirm that composition of hydrogel is highly beneficial to tissue adhesions and burn wound regeneration ability. Frequently, designed injectable hydrogel can be injected into deep and irregular burn wound sites and would provide rapid self‐healing and protection from infection environment with thoroughly filled wound area. Meanwhile, incorporated carbon nanofillers improve injectable hydrogel strength and also offer high fluid uptake to hydrogel when applied on the wound sites. In vitro MTT cytotoxicity assay on human fibroblast cell lines establish outstanding cytocompatibility of the injectable hydrogel and also have capability to support cell growth and proliferations. In vivo burn wound animal model results demonstrate that the hydrogel dressings predominantly influenced enhanced wound contraction and also promoted greater collagen deposition, granulation tissue thickness and vascularization. This investigation's outcome could open a new pathway to fabricate multifunctional biopolymeric hydrogel for quicker burn wound therapy and effectively prevents microenvironment bacterial infections. Blackwell Publishing Ltd 2021-08-20 /pmc/articles/PMC8874045/ /pubmed/34414663 http://dx.doi.org/10.1111/iwj.13665 Text en © 2021 The Authors. International Wound Journal published by Medicalhelplines.com Inc (3M) and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Dong, Meiping Mao, Yi Zhao, Zhiwei Zhang, Jinbo Zhu, Lipeng Chen, Linlu Cao, Liexiang Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations |
title | Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations |
title_full | Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations |
title_fullStr | Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations |
title_full_unstemmed | Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations |
title_short | Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations |
title_sort | novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: in vitro and in vivo evaluations |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874045/ https://www.ncbi.nlm.nih.gov/pubmed/34414663 http://dx.doi.org/10.1111/iwj.13665 |
work_keys_str_mv | AT dongmeiping novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations AT maoyi novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations AT zhaozhiwei novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations AT zhangjinbo novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations AT zhulipeng novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations AT chenlinlu novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations AT caoliexiang novelfabricationofantibioticcontainingmultifunctionalsilkfibroininjectablehydrogeldressingtoenhancebactericidalactionandwoundhealingefficiencyonburnwoundinvitroandinvivoevaluations |