Cargando…
The effects of cigarette smoking on the salivary and tongue microbiome
OBJECTIVES: It has been suggested that smoking affects the oral microbiome, but its effects on sites other than the subgingival microbiome remain unclear. This study investigated the composition of the salivary and tongue bacterial communities of smokers and nonsmokers in periodontally healthy adult...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874080/ https://www.ncbi.nlm.nih.gov/pubmed/34505401 http://dx.doi.org/10.1002/cre2.489 |
Sumario: | OBJECTIVES: It has been suggested that smoking affects the oral microbiome, but its effects on sites other than the subgingival microbiome remain unclear. This study investigated the composition of the salivary and tongue bacterial communities of smokers and nonsmokers in periodontally healthy adults. METHODS: The study population included 50 healthy adults. The bacterial composition of resting saliva and the tongue coating was identified through barcoded pyrosequencing analysis of the 16S rRNA gene. The Brinkman index (BI) was used to calculate lifetime exposure to smoking. The richness and diversity of the microbiome were evaluated using the t‐test. Differences in the proportions of bacterial genera between smokers and nonsmokers were evaluated using the Mann–Whitney U test. The quantitative relationship between the proportions of genera and the BI was evaluated using Pearson's correlation analysis. RESULTS: The richness and diversity of the oral microbiome differed significantly between saliva and the tongue but not between smokers and nonsmokers. The saliva samples from smokers were enriched with the genera Treponema and Selenomonas. The tongue samples from smokers were enriched with the genera Dialister and Atopobium. The genus Cardiobacterium in saliva, and the genus Granulicatella on the tongue, were negatively correlated with BI values. On the other hand, the genera Treponema, Oribacterium, Dialister, Filifactor, Veillonella, and Selenomonas in saliva and Dialister, Bifidobacterium, Megasphaera, Mitsuokella, and Cryptobacterium on the tongue were positively correlated with BI values. CONCLUSIONS: The saliva and tongue microbial profiles of smokers and nonsmokers differed in periodontally healthy adults. The genera associated with periodontitis and oral malodor accounted for high proportions in saliva and on the tongue of smokers without periodontitis and were positively correlated with lifetime exposure to smoking. The tongue might be a reservoir of pathogens associated with oral disease in smokers. |
---|