Cargando…
Surface Roughness Enhances Self-Nucleation of High-Density Polyethylene Droplets Dispersed within Immiscible Blends
[Image: see text] Highly linear or high-density polyethylenes (HDPEs) have an intrinsically high nucleation density compared to other polyolefins. Enhancing their nucleation density by self-nucleation is therefore difficult, leading to a narrow self-nucleation Domain (i.e., the so-called DomainII or...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874415/ https://www.ncbi.nlm.nih.gov/pubmed/35237024 http://dx.doi.org/10.1021/acs.macromol.1c02487 |
_version_ | 1784657682818400256 |
---|---|
author | Fenni, Seif Eddine Caputo, Maria Rosaria Müller, Alejandro J. Cavallo, Dario |
author_facet | Fenni, Seif Eddine Caputo, Maria Rosaria Müller, Alejandro J. Cavallo, Dario |
author_sort | Fenni, Seif Eddine |
collection | PubMed |
description | [Image: see text] Highly linear or high-density polyethylenes (HDPEs) have an intrinsically high nucleation density compared to other polyolefins. Enhancing their nucleation density by self-nucleation is therefore difficult, leading to a narrow self-nucleation Domain (i.e., the so-called DomainII or the temperature Domain where self-nuclei can be injected into the material without the occurrence of annealing). In this work, we report that when HDPE is blended (up to 50%) with immiscible matrices, such as atactic polystyrene (PS) or Nylon 6, its self-nucleation capacity can be greatly increased. In addition, temperatures higher than the equilibrium melting temperature of the HDPE phase are needed to erase the significantly enhanced crystalline memory in the blends. Morphological evidence gathered by Scanning and Transmission Electron Microscopies (SEM and TEM) indicates that these unexpected results can be explained by the modification of the interface between blend components. The filling of the solid HDPE surface asperities by the low viscosity polystyrene during heating to the self-nucleation temperature, or the crystallization of the matrix in the case of Nylon 6, enhances the interface roughness between the two polymers in the blends. Such rougher interfaces can remarkably increase the self-nucleation capacity of the HDPE phase via surface nucleation. |
format | Online Article Text |
id | pubmed-8874415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-88744152022-02-28 Surface Roughness Enhances Self-Nucleation of High-Density Polyethylene Droplets Dispersed within Immiscible Blends Fenni, Seif Eddine Caputo, Maria Rosaria Müller, Alejandro J. Cavallo, Dario Macromolecules [Image: see text] Highly linear or high-density polyethylenes (HDPEs) have an intrinsically high nucleation density compared to other polyolefins. Enhancing their nucleation density by self-nucleation is therefore difficult, leading to a narrow self-nucleation Domain (i.e., the so-called DomainII or the temperature Domain where self-nuclei can be injected into the material without the occurrence of annealing). In this work, we report that when HDPE is blended (up to 50%) with immiscible matrices, such as atactic polystyrene (PS) or Nylon 6, its self-nucleation capacity can be greatly increased. In addition, temperatures higher than the equilibrium melting temperature of the HDPE phase are needed to erase the significantly enhanced crystalline memory in the blends. Morphological evidence gathered by Scanning and Transmission Electron Microscopies (SEM and TEM) indicates that these unexpected results can be explained by the modification of the interface between blend components. The filling of the solid HDPE surface asperities by the low viscosity polystyrene during heating to the self-nucleation temperature, or the crystallization of the matrix in the case of Nylon 6, enhances the interface roughness between the two polymers in the blends. Such rougher interfaces can remarkably increase the self-nucleation capacity of the HDPE phase via surface nucleation. American Chemical Society 2022-02-11 2022-02-22 /pmc/articles/PMC8874415/ /pubmed/35237024 http://dx.doi.org/10.1021/acs.macromol.1c02487 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Fenni, Seif Eddine Caputo, Maria Rosaria Müller, Alejandro J. Cavallo, Dario Surface Roughness Enhances Self-Nucleation of High-Density Polyethylene Droplets Dispersed within Immiscible Blends |
title | Surface Roughness Enhances Self-Nucleation of High-Density
Polyethylene Droplets Dispersed within Immiscible Blends |
title_full | Surface Roughness Enhances Self-Nucleation of High-Density
Polyethylene Droplets Dispersed within Immiscible Blends |
title_fullStr | Surface Roughness Enhances Self-Nucleation of High-Density
Polyethylene Droplets Dispersed within Immiscible Blends |
title_full_unstemmed | Surface Roughness Enhances Self-Nucleation of High-Density
Polyethylene Droplets Dispersed within Immiscible Blends |
title_short | Surface Roughness Enhances Self-Nucleation of High-Density
Polyethylene Droplets Dispersed within Immiscible Blends |
title_sort | surface roughness enhances self-nucleation of high-density
polyethylene droplets dispersed within immiscible blends |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874415/ https://www.ncbi.nlm.nih.gov/pubmed/35237024 http://dx.doi.org/10.1021/acs.macromol.1c02487 |
work_keys_str_mv | AT fenniseifeddine surfaceroughnessenhancesselfnucleationofhighdensitypolyethylenedropletsdispersedwithinimmiscibleblends AT caputomariarosaria surfaceroughnessenhancesselfnucleationofhighdensitypolyethylenedropletsdispersedwithinimmiscibleblends AT mulleralejandroj surfaceroughnessenhancesselfnucleationofhighdensitypolyethylenedropletsdispersedwithinimmiscibleblends AT cavallodario surfaceroughnessenhancesselfnucleationofhighdensitypolyethylenedropletsdispersedwithinimmiscibleblends |