Cargando…
Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle
Automatic systems are increasingly being applied in the automotive industry to improve driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of this work is focused on improving the automatic brake assistance systems of motor vehicles trying to imitate hu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874473/ https://www.ncbi.nlm.nih.gov/pubmed/35214546 http://dx.doi.org/10.3390/s22041644 |
_version_ | 1784657696627097600 |
---|---|
author | Garrosa, María Olmeda, Ester Díaz, Vicente Mendoza-Petit, Mᵃ Fernanda |
author_facet | Garrosa, María Olmeda, Ester Díaz, Vicente Mendoza-Petit, Mᵃ Fernanda |
author_sort | Garrosa, María |
collection | PubMed |
description | Automatic systems are increasingly being applied in the automotive industry to improve driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of this work is focused on improving the automatic brake assistance systems of motor vehicles trying to imitate human behaviour but correcting possible human errors such as distractions, lack of visibility or time reaction. The proposed system can optimise the intensity of the braking according to the available distance to carry out the manoeuvre and the vehicle speed to be as less aggressive as possible, thus giving priority to the comfort of the driver. A series of tests are carried out in this work with a vehicle instrumented with sensors that provide real-time information about the braking system. The data obtained experimentally during the dynamic tests are used to design an estimator using the Artificial Neural Network (ANN) technique. This information makes it possible to characterise all braking situations based on the pressure of the brake circuit, the type of manoeuvre and the test speed. Thanks to this ANN, it is possible to estimate the requirements of the braking system in real driving situations and carry out the manoeuvres automatically. Experiments and simulations verified the proposed method for the estimation of braking pressure in real deceleration scenarios. |
format | Online Article Text |
id | pubmed-8874473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88744732022-02-26 Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle Garrosa, María Olmeda, Ester Díaz, Vicente Mendoza-Petit, Mᵃ Fernanda Sensors (Basel) Article Automatic systems are increasingly being applied in the automotive industry to improve driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of this work is focused on improving the automatic brake assistance systems of motor vehicles trying to imitate human behaviour but correcting possible human errors such as distractions, lack of visibility or time reaction. The proposed system can optimise the intensity of the braking according to the available distance to carry out the manoeuvre and the vehicle speed to be as less aggressive as possible, thus giving priority to the comfort of the driver. A series of tests are carried out in this work with a vehicle instrumented with sensors that provide real-time information about the braking system. The data obtained experimentally during the dynamic tests are used to design an estimator using the Artificial Neural Network (ANN) technique. This information makes it possible to characterise all braking situations based on the pressure of the brake circuit, the type of manoeuvre and the test speed. Thanks to this ANN, it is possible to estimate the requirements of the braking system in real driving situations and carry out the manoeuvres automatically. Experiments and simulations verified the proposed method for the estimation of braking pressure in real deceleration scenarios. MDPI 2022-02-19 /pmc/articles/PMC8874473/ /pubmed/35214546 http://dx.doi.org/10.3390/s22041644 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Garrosa, María Olmeda, Ester Díaz, Vicente Mendoza-Petit, Mᵃ Fernanda Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle |
title | Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle |
title_full | Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle |
title_fullStr | Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle |
title_full_unstemmed | Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle |
title_short | Design of an Estimator Using the Artificial Neural Network Technique to Characterise the Braking of a Motor Vehicle |
title_sort | design of an estimator using the artificial neural network technique to characterise the braking of a motor vehicle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874473/ https://www.ncbi.nlm.nih.gov/pubmed/35214546 http://dx.doi.org/10.3390/s22041644 |
work_keys_str_mv | AT garrosamaria designofanestimatorusingtheartificialneuralnetworktechniquetocharacterisethebrakingofamotorvehicle AT olmedaester designofanestimatorusingtheartificialneuralnetworktechniquetocharacterisethebrakingofamotorvehicle AT diazvicente designofanestimatorusingtheartificialneuralnetworktechniquetocharacterisethebrakingofamotorvehicle AT mendozapetitmafernanda designofanestimatorusingtheartificialneuralnetworktechniquetocharacterisethebrakingofamotorvehicle |