Cargando…

Auxetic Metamaterials for Biomedical Devices: Current Situation, Main Challenges, and Research Trends

Auxetic metamaterials are characterized by a negative Poisson ratio (NPR) and display an unexpected property of lateral expansion when stretched and densification when compressed. Auxetic properties can be achieved by designing special microstructures, hence their classification as metamaterials, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Lvov, Vladislav A., Senatov, Fedor S., Veveris, Alnis A., Skrybykina, Vitalina A., Díaz Lantada, Andrés
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874587/
https://www.ncbi.nlm.nih.gov/pubmed/35207976
http://dx.doi.org/10.3390/ma15041439
Descripción
Sumario:Auxetic metamaterials are characterized by a negative Poisson ratio (NPR) and display an unexpected property of lateral expansion when stretched and densification when compressed. Auxetic properties can be achieved by designing special microstructures, hence their classification as metamaterials, and can be manufactured with varied raw materials and methods. Since work in this field began, auxetics have been considered for different biomedical applications, as some biological tissues have auxetic-like behaviour due to their lightweight structure and morphing properties, which makes auxetics ideal for interacting with the human body. This research study is developed with the aim of presenting an updated overview of auxetic metamaterials for biomedical devices. It stands out for providing a comprehensive view of medical applications for auxetics, including a focus on prosthetics, orthotics, ergonomic appliances, performance enhancement devices, in vitro medical devices for interacting with cells, and advanced medicinal clinical products, especially tissue engineering scaffolds with living cells. Innovative design and simulation approaches for the engineering of auxetic-based products are covered, and the relevant manufacturing technologies for prototyping and producing auxetics are analysed, taking into consideration those capable of processing biomaterials and enabling multi-scale and multi-material auxetics. An engineering design rational for auxetics-based medical devices is presented with integrative purposes. Finally, key research, development and expected technological breakthroughs are discussed.