Cargando…
Polyploidization in Orchids: From Cellular Changes to Breeding Applications
Polyploidy occurs naturally in plants through cell division errors or can artificially be induced by antimitotic agents and has ecological effects on species adaptation, evolution, and development. In agriculture, polyploidy provides economically improved cultivars. Furthermore, the artificial induc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874786/ https://www.ncbi.nlm.nih.gov/pubmed/35214806 http://dx.doi.org/10.3390/plants11040469 |
Sumario: | Polyploidy occurs naturally in plants through cell division errors or can artificially be induced by antimitotic agents and has ecological effects on species adaptation, evolution, and development. In agriculture, polyploidy provides economically improved cultivars. Furthermore, the artificial induction of polyploids increases the frequency; thus, it accelerates obtaining polyploid plants used in breeding programs. This is the reason for its use in developing many crops of economic interest, as is the case of orchids in the flower market. Polyploidy in ornamental plants is mainly associated with flowers of larger size, fragrance, and more intense coloring when compared to naturally diploid plants. Currently, orchids represent the largest flower market worldwide; thus, breeding programs aim to obtain flowers with the larger size, durability, intense colors, and resistance to pathogens. Furthermore, orchid hybridization with polyploidy induction has been used to produce improved hybrid cultivars. Thus, the objective of this review was to compile information regarding the natural occurrence, importance, and methods of induction of polyploidy in orchids. The study also summarizes the significance of polyploids and techniques associated with artificially inducing polyploidy in different orchids of commercial relevance. |
---|