Cargando…
Early Identification of Maternal Cardiovascular Risk Through Sourcing and Preparing Electronic Health Record Data: Machine Learning Study
BACKGROUND: Health care data are fragmenting as patients seek care from diverse sources. Consequently, patient care is negatively impacted by disparate health records. Machine learning (ML) offers a disruptive force in its ability to inform and improve patient care and outcomes. However, the differe...
Autores principales: | Shara, Nawar, Anderson, Kelley M, Falah, Noor, Ahmad, Maryam F, Tavazoei, Darya, Hughes, Justin M, Talmadge, Bethany, Crovatt, Samantha, Dempers, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8874927/ https://www.ncbi.nlm.nih.gov/pubmed/35142637 http://dx.doi.org/10.2196/34932 |
Ejemplares similares
-
Voice activated remote monitoring technology for heart failure patients: Study design, feasibility and observations from a pilot randomized control trial
por: Shara, Nawar, et al.
Publicado: (2022) -
Voice Interface Technology Adoption by Patients With Heart Failure: Pilot Comparison Study
por: Apergi, Lida Anna, et al.
Publicado: (2021) -
Short-Term Time Trends in Prescribing Therapy for Hypothyroidism: Results of a Survey of American Thyroid Association Members
por: Jonklaas, Jacqueline, et al.
Publicado: (2019) -
Enhanced measured synchronization of unsynchronized sources: significance for brain recordings
por: Dominguez, Luis Garcia, et al.
Publicado: (2007) -
The contrasting short‐term effects of COVID‐19 on dental care practices in the United States
por: Diab, Zeid, et al.
Publicado: (2021)