Cargando…

Method of Data Selection for Turning of Inconel 718 Alloy Obtained by Casting and Laser Sintering Powder

This article focuses on the issues related to the machining of DMLS (Direct Metal Laser Sintering) laser sintered parts made of Inconel 718 alloy. Longitudinal turning with CBN (cubic boron nitride) tool inserts is analyzed. The authors made an attempt to establish a procedure to find the optimal fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Latosińska, Ksenia, Struzikiewicz, Grzegorz, Zębala, Wojciech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875014/
https://www.ncbi.nlm.nih.gov/pubmed/35207989
http://dx.doi.org/10.3390/ma15041448
Descripción
Sumario:This article focuses on the issues related to the machining of DMLS (Direct Metal Laser Sintering) laser sintered parts made of Inconel 718 alloy. Longitudinal turning with CBN (cubic boron nitride) tool inserts is analyzed. The authors made an attempt to establish a procedure to find the optimal finishing cutting parameters while minimizing the specific cutting force and taking into account the machined surface quality criterion. During experiments the influence of cutting data on the values of cutting force and specific cutting force were performed. Moreover, the results of measurements of surface roughness parameters and the results of analysis of chip form are presented as well. Cast Inconel 718 has also been tested for comparative purposes. The variability of the material’s hardening state during machining was found, as well as the variability of the specific cutting force value as a function of the cross-sectional shape of the cutting layer. The values of all components of the total cutting force for turning the material obtained by the additive method are lower than for turning the cast material by approximately 32%. At the end of the article, the authors present an application of the proposed optimization algorithm. It was established that by changing the cross-section shape of the cutting layer, it was possible to perform the turning process at a specific cutting force value of 22% less, which is achieved by reducing the cross-section size.