Cargando…
Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model
Single image depth estimation works fail to separate foreground elements because they can easily be confounded with the background. To alleviate this problem, we propose the use of a semantic segmentation procedure that adds information to a depth estimator, in this case, a 3D Convolutional Neural N...
Autores principales: | Valdez-Rodríguez, José E., Calvo, Hiram, Felipe-Riverón, Edgardo, Moreno-Armendáriz, Marco A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875167/ https://www.ncbi.nlm.nih.gov/pubmed/35214571 http://dx.doi.org/10.3390/s22041669 |
Ejemplares similares
-
Fast CNN Stereo Depth Estimation through Embedded GPU Devices
por: Aguilera, Cristhian A., et al.
Publicado: (2020) -
Semantic Segmentation Leveraging Simultaneous Depth Estimation
por: Sun, Wenbo, et al.
Publicado: (2021) -
Semantic Segmentation and Depth Estimation Based on Residual Attention Mechanism
por: Ji, Naihua, et al.
Publicado: (2023) -
SemanticDepth: Fusing Semantic Segmentation and Monocular Depth Estimation for Enabling Autonomous Driving in Roads without Lane Lines
por: Palafox, Pablo R., et al.
Publicado: (2019) -
Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images
Publicado: (2021)