Cargando…

Adult Human Vascular Smooth Muscle Cells on 3D Silk Fibroin Nonwovens Release Exosomes Enriched in Angiogenic and Growth-Promoting Factors

Background. Our earlier works showed the quick vascularization of mouse skin grafted Bombyx mori 3D silk fibroin nonwoven scaffolds (3D-SFnws) and the release of exosomes enriched in angiogenic/growth factors (AGFs) from in vitro 3D-SFnws-stuck human dermal fibroblasts (HDFs). Here, we explored whet...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Peng, Chiarini, Anna, Wu, Jun, Wei, Zairong, Armato, Ubaldo, Dal Prà, Ilaria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875541/
https://www.ncbi.nlm.nih.gov/pubmed/35215609
http://dx.doi.org/10.3390/polym14040697
Descripción
Sumario:Background. Our earlier works showed the quick vascularization of mouse skin grafted Bombyx mori 3D silk fibroin nonwoven scaffolds (3D-SFnws) and the release of exosomes enriched in angiogenic/growth factors (AGFs) from in vitro 3D-SFnws-stuck human dermal fibroblasts (HDFs). Here, we explored whether coronary artery adult human smooth muscle cells (AHSMCs) also release AGFs-enriched exosomes when cultured on 3D-SFnws in vitro. Methods. Media with exosome-depleted FBS served for AHSMCs and human endothelial cells (HECs) cultures on 3D-SFnws or polystyrene. Biochemical methods and double-antibody arrays assessed cell growth, metabolism, and intracellular TGF-β and NF-κB signalling pathways activation. AGFs conveyed by CD9(+)/CD81(+) exosomes released from AHSMCs were double-antibody array analysed and their angiogenic power evaluated on HECs in vitro. Results. AHSMCs grew and consumed D-glucose more intensely and showed a stronger phosphorylation/activation of TAK-1, SMAD-1/-2/-4/-5, ATF-2, c-JUN, ATM, CREB, and an IκBα phosphorylation/inactivation on SFnws vs. polystyrene, consistent overall with a proliferative/secretory phenotype. SFnws-stuck AHSMCs also released exosomes richer in IL-1α/-2/-4/-6/-8; bFGF; GM-CSF; and GRO-α/-β/-γ, which strongly stimulated HECs’ growth, migration, and tubes/nodes assembly in vitro. Conclusions. Altogether, the intensified AGFs exosomal release from 3D-SFnws-attached AHSMCs and HDFs could advance grafts’ colonization, vascularization, and take in vivo—noteworthy assets for prospective clinical applications.