Cargando…
Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments
A multi-target small molecule modulator is advantageous for treating complicated diseases such as cancers. However, the strategy and application for discovering a multi-target modulator have been less reported. This study presents the dual inhibitors for kinase and carbonic anhydrase (CA) predicted...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875555/ https://www.ncbi.nlm.nih.gov/pubmed/35215348 http://dx.doi.org/10.3390/ph15020236 |
_version_ | 1784657944437063680 |
---|---|
author | Kim, Min-Jeong Pandit, Sarita Jee, Jun-Goo |
author_facet | Kim, Min-Jeong Pandit, Sarita Jee, Jun-Goo |
author_sort | Kim, Min-Jeong |
collection | PubMed |
description | A multi-target small molecule modulator is advantageous for treating complicated diseases such as cancers. However, the strategy and application for discovering a multi-target modulator have been less reported. This study presents the dual inhibitors for kinase and carbonic anhydrase (CA) predicted by machine learning (ML) classifiers, and validated by biochemical and biophysical experiments. ML trained by CA I and CA II inhibitor molecular fingerprints predicted candidates from the protein-specific bioactive molecules approved or under clinical trials. For experimental tests, three sulfonamide-containing kinase inhibitors, 5932, 5946, and 6046, were chosen. The enzyme assays with CA I, CA II, CA IX, and CA XII have allowed the quantitative comparison in the molecules’ inhibitory activities. While 6046 inhibited weakly, 5932 and 5946 exhibited potent inhibitions with 100 nM to 1 μM inhibitory constants. The ML screening was extended for finding CAs inhibitors of all known kinase inhibitors. It found XMU-MP-1 as another potent CA inhibitor with an approximate 30 nM inhibitory constant for CA I, CA II, and CA IX. Differential scanning fluorimetry confirmed the direct interaction between CAs and small molecules. Cheminformatics studies, including docking simulation, suggest that each molecule possesses two separate functional moieties: one for interaction with kinases and the other with CAs. |
format | Online Article Text |
id | pubmed-8875555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88755552022-02-26 Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments Kim, Min-Jeong Pandit, Sarita Jee, Jun-Goo Pharmaceuticals (Basel) Article A multi-target small molecule modulator is advantageous for treating complicated diseases such as cancers. However, the strategy and application for discovering a multi-target modulator have been less reported. This study presents the dual inhibitors for kinase and carbonic anhydrase (CA) predicted by machine learning (ML) classifiers, and validated by biochemical and biophysical experiments. ML trained by CA I and CA II inhibitor molecular fingerprints predicted candidates from the protein-specific bioactive molecules approved or under clinical trials. For experimental tests, three sulfonamide-containing kinase inhibitors, 5932, 5946, and 6046, were chosen. The enzyme assays with CA I, CA II, CA IX, and CA XII have allowed the quantitative comparison in the molecules’ inhibitory activities. While 6046 inhibited weakly, 5932 and 5946 exhibited potent inhibitions with 100 nM to 1 μM inhibitory constants. The ML screening was extended for finding CAs inhibitors of all known kinase inhibitors. It found XMU-MP-1 as another potent CA inhibitor with an approximate 30 nM inhibitory constant for CA I, CA II, and CA IX. Differential scanning fluorimetry confirmed the direct interaction between CAs and small molecules. Cheminformatics studies, including docking simulation, suggest that each molecule possesses two separate functional moieties: one for interaction with kinases and the other with CAs. MDPI 2022-02-16 /pmc/articles/PMC8875555/ /pubmed/35215348 http://dx.doi.org/10.3390/ph15020236 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Min-Jeong Pandit, Sarita Jee, Jun-Goo Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments |
title | Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments |
title_full | Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments |
title_fullStr | Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments |
title_full_unstemmed | Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments |
title_short | Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments |
title_sort | discovery of kinase and carbonic anhydrase dual inhibitors by machine learning classification and experiments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875555/ https://www.ncbi.nlm.nih.gov/pubmed/35215348 http://dx.doi.org/10.3390/ph15020236 |
work_keys_str_mv | AT kimminjeong discoveryofkinaseandcarbonicanhydrasedualinhibitorsbymachinelearningclassificationandexperiments AT panditsarita discoveryofkinaseandcarbonicanhydrasedualinhibitorsbymachinelearningclassificationandexperiments AT jeejungoo discoveryofkinaseandcarbonicanhydrasedualinhibitorsbymachinelearningclassificationandexperiments |