Cargando…
A Comparison of Infectious Disease Forecasting Methods across Locations, Diseases, and Time
Accurate infectious disease forecasting can inform efforts to prevent outbreaks and mitigate adverse impacts. This study compares the performance of statistical, machine learning (ML), and deep learning (DL) approaches in forecasting infectious disease incidences across different countries and time...
Autores principales: | Dixon, Samuel, Keshavamurthy, Ravikiran, Farber, Daniel H., Stevens, Andrew, Pazdernik, Karl T., Charles, Lauren E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875569/ https://www.ncbi.nlm.nih.gov/pubmed/35215129 http://dx.doi.org/10.3390/pathogens11020185 |
Ejemplares similares
-
Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches
por: Keshavamurthy, Ravikiran, et al.
Publicado: (2022) -
Digital Biosurveillance for Zoonotic Disease Detection in Kenya
por: Keshavamurthy, Ravikiran, et al.
Publicado: (2021) -
Predicting Kyasanur forest disease in resource-limited settings using event-based surveillance and transfer learning
por: Keshavamurthy, Ravikiran, et al.
Publicado: (2023) -
Biological Warfare: Infectious Disease and Bioterrorism
por: Clark, David P., et al.
Publicado: (2016) -
Applying the Spatial Transmission Network to the Forecast of Infectious Diseases Across Multiple Regions
por: Wang, Huimin, et al.
Publicado: (2022)