Cargando…
Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress
Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structur...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875628/ https://www.ncbi.nlm.nih.gov/pubmed/35214878 http://dx.doi.org/10.3390/plants11040544 |
_version_ | 1784657979054751744 |
---|---|
author | Norero, Natalia Sigrid Rey Burusco, María Florencia D’Ippólito, Sebastián Décima Oneto, Cecilia Andrea Massa, Gabriela Alejandra Castellote, Martín Alfredo Feingold, Sergio Enrique Guevara, María Gabriela |
author_facet | Norero, Natalia Sigrid Rey Burusco, María Florencia D’Ippólito, Sebastián Décima Oneto, Cecilia Andrea Massa, Gabriela Alejandra Castellote, Martín Alfredo Feingold, Sergio Enrique Guevara, María Gabriela |
author_sort | Norero, Natalia Sigrid |
collection | PubMed |
description | Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR. |
format | Online Article Text |
id | pubmed-8875628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88756282022-02-26 Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress Norero, Natalia Sigrid Rey Burusco, María Florencia D’Ippólito, Sebastián Décima Oneto, Cecilia Andrea Massa, Gabriela Alejandra Castellote, Martín Alfredo Feingold, Sergio Enrique Guevara, María Gabriela Plants (Basel) Article Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR. MDPI 2022-02-18 /pmc/articles/PMC8875628/ /pubmed/35214878 http://dx.doi.org/10.3390/plants11040544 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Norero, Natalia Sigrid Rey Burusco, María Florencia D’Ippólito, Sebastián Décima Oneto, Cecilia Andrea Massa, Gabriela Alejandra Castellote, Martín Alfredo Feingold, Sergio Enrique Guevara, María Gabriela Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress |
title | Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress |
title_full | Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress |
title_fullStr | Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress |
title_full_unstemmed | Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress |
title_short | Genome-Wide Analyses of Aspartic Proteases on Potato Genome (Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress |
title_sort | genome-wide analyses of aspartic proteases on potato genome (solanum tuberosum): generating new tools to improve the resistance of plants to abiotic stress |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875628/ https://www.ncbi.nlm.nih.gov/pubmed/35214878 http://dx.doi.org/10.3390/plants11040544 |
work_keys_str_mv | AT noreronataliasigrid genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT reyburuscomariaflorencia genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT dippolitosebastian genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT decimaonetoceciliaandrea genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT massagabrielaalejandra genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT castellotemartinalfredo genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT feingoldsergioenrique genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress AT guevaramariagabriela genomewideanalysesofasparticproteasesonpotatogenomesolanumtuberosumgeneratingnewtoolstoimprovetheresistanceofplantstoabioticstress |